secml: A Python Library for Secure and Explainable Machine Learning

We present secml, an open-source Python library for secure and explainable machine learning. It implements the most popular attacks against machine learning, including not only test-time evasion attacks to generate adversarial examples against deep neural networks, but also training-time poisoning attacks against support vector machines and many other algorithms. These attacks enable evaluating the security of learning algorithms and of the corresponding defenses under both white-box and black-box threat models. To this end, secml provides built-in functions to compute security evaluation curves, showing how quickly classification performance decreases against increasing adversarial perturbations of the input data. secml also includes explainability methods to help understand why adversarial attacks succeed against a given model, by visualizing the most influential features and training prototypes contributing to each decision.


There's unfortunately not much to read here yet...

Discover the Best of Machine Learning.

Ever having issues keeping up with everything that's going on in Machine Learning? That's where we help. We're sending out a weekly digest, highlighting the Best of Machine Learning.

Join over 900 Machine Learning Engineers receiving our weekly digest.

Best of Machine LearningBest of Machine Learning

Discover the best guides, books, papers and news in Machine Learning, once per week.