A Framework for Understanding Unintended Consequences of Machine Learning

As machine learning increasingly affects people and society, it is important that we strive for a comprehensive and unified understanding of how and why unwanted consequences arise. For instance, downstream harms to particular groups are often blamed on "biased data," but this concept encompass too many issues to be useful in developing solutions. In this paper, we provide a framework that partitions sources of downstream harm in machine learning into five distinct categories spanning the data generation and machine learning pipeline. We describe how these issues arise, how they are relevant to particular applications, and how they motivate different solutions. In doing so, we aim to facilitate the development of solutions that stem from an understanding of application-specific populations and data generation processes, rather than relying on general claims about what may or may not be "fair."

Comments

There's unfortunately not much to read here yet...

Discover the Best of Machine Learning.

Ever having issues keeping up with everything that's going on in Machine Learning? That's where we help. We're sending out a weekly digest, highlighting the Best of Machine Learning.

Join over 700 Machine Learning Engineers receiving our weekly digest.

Best of Machine LearningBest of Machine Learning

Discover the best guides, books, papers and news in Machine Learning, once per week.

Twitter